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We consider an anharmonic crystal described by variables Sx, x e Z e, 
Sx e [~, with one-body interaction ~ ]Sx] ~ and nearest neighbor (n.n.) two- 
body interaction ~ ] S x -  S~] e. We prove that, for A c 77a bounded, 
A ~ A ,  

pA(S~) ~<exp[SlA[ -- 7 ~ IS~l ~ -  7 ~ I & -  Svl ~] 
x~& x,y~A 

x,y.n.n 

where pA is the correlation function for the free boundary condition Gibbs 
state in A, ~ > 0 and 3 are suitable constants independent of A and &. This 
generalizes previous results obtained in the case a /> ft. 

KEY WORDS: Statistical mechanics; anharmonic crystal; probability 
estimates for correlation functions; DLR processes. 

1. I N T R O D U C T I O N  

In  this paper  we examine a system of u n b o u n d e d  spins Sx, x ~ Z a, Sx ~ ~. 

The interact ion we consider is the following: there is a self-energy which 

behaves asymptotically as [Sx] ~ and  there are nearest neighbor (n.n.) inter- 

actions which behave asymptotically as IS, - S~] B. The free measure is the 
Lebesgue measure dS~. 

The statistical mechanics of these systems has been studied in Refs. 2 

and  3 when ~ /> fi > 0. Here we will deal with the case/3 > , > 0, namely  

when the interact ion energy dominates  over the self-energy, for larg4 values 
of the spins. 

If  we th ink  of the above as a schematization of an anharmonic  crystal 

(a, fi # 2), then some natura l  questions arise. Does a l imiting equi l ibr ium 
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state exist ? Namely, are the surface effects negligible even for large values of 
/3? What does the limiting measure look like? For instance, can one prove 
that the larger/3 is, the smaller is the probability of large differences between 
nearest spins? More generally, what are the estimates for the correlation 
functions ? 

In the next section we will prove that 

e x p l S l A I - y ~ I S . l " - y  ~ '  [ s x - s d e  [ pA(Szx) <~ 
k X ~  X ,y~A  J 

where pA is the correlation function for the free boundary condition Gibbs 
state in A, y > 0 and 8 are suitable constants independent of A and A, and 
~ '  denotes the sum over the n.n. spins. From this it Nllows by standard argu- 
ments that the infinite-volume correlations functions exist (~,a> for regular 
enough boundary conditions, as is briefly recalled in Section 2. 

In Section 3 we prove some estimates left over from Section 2. A con- 
cluding section then follows. 

2. T H E  S U P E R S T A B I L I T Y  E S T I M A T E S  

We consider the anharmonic crystal given by a set of variables S~, 
x ~ 7/a, Sx e R (for the sake of simplicity we require S~ e R; generalization to 
higher dimension spin spaces is straightforward). The one-body interaction is 
r and the two-body interaction r - S~I ) is present only if x and y are 
n.n. in 2U. 

We assume there are constants A, A', A > 0, ~ > 0 such that 

A[&I = - A' < r < A(I&I" + 1) (2.1) 

while the two-body potential is characterized by B, B', B > 0 in such a way 
that 

/TIS~ - Svl e - /~' ~< r - Svl) <~ B(]S~ - Sy[ e + 1) (2.2) 

We consider a bounded region A c 7/a, and the Gibbs state at volume A 
with free boundary conditions is defined as usual by 

tz(dSA) = (1/ZA) exp[-- V(SA)] dSA (2.3) 

where 

Sa = {Sx, x ~ A}, dSa = ~-~ dSx 
x e A  

dSx is the Lebesgue measure on R; and 

v(sA) --  r  + r  - S l) 
X~A X , y ~ A  

Za = f d S .  e x p [ -  V(S,)] 
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ZA is well defined because of Eqs. (2.1) and (2.2). Of  course q~ and ~b should 
be assumed to be Borel-measurable. 

Bomork. Both the assumptions that the interaction is n.n. and that the 
free measure is dS~ are too restrictive. We assumed them for the sake of 
notational simplicity. I t  would be quite easy to get Theorem 2.1 below also 
for finite range, with some other conditions on ~b, and to consider free 
measures that satisfy the following regularity condition. We define a partition 
of [R into intervals I~,z, where t is the length of the intervals, I e 7/, and M is 
the center of  the interval I~,~. Then an acceptable free measure t~(dx) is one 
such that there exist/~, lo, ~: > 0:t~(IA,3 /> ~:, VIII /> 10. 

The correlation functions for the model are defined as 

1 f~ dSA\A e x p [ -  V(SA)], A c A (2.4) pA(SD = 2~  A,A 

In the following theorem we give estimates for pA(S~) which are uniform in 
A while A is kept fixed. These are analogous to Ruelle's superstability esti- 
mates, (1,2) which hold in the above conditions whenever ~ >/ft. Given these 
estimates, it will be standard (1,3) to prove the existence of the thermodynamic 
limit both for the pressure and the correlation functions. 

We introduce the function (F c 7/a is bounded) 

E(Sv) = ~" [Sxl ~ + ~ '  [s~ - S~l ~ (2.4a) 

and we state the following result: 

Theorem 2.1. Thereexist 7 > 0and  3 such that, if A ~ A and A c 7/a 
is bounded, then 

pA(S~) ~< exp[-7'E(SA) + ~IAI] (2.4b) 

Notice that S and 7 depend on 6 and ~b but do not depend on A and A. 

Proof. The proof  follows the lines of Ruelle's/2) except for the lower 
bound of Za, which in this case requires particular care when fl > ~. There- 
fore we will briefly sketch the proof, isolating the technical points in Proposi- 
tion 3.1, which will be proven in the next section. 

The proof  proceeds by induction on ]A I. Therefore we consider the 
theorem proven for A' and we want to prove it for A = A' u {0}, 0 r A'. Of  
course there is no loss of generality if we identify the new point in A with the 
origin 0 of 7/a. We introduce a sequence of cubes Aq, 

Aq = {X e 7/d] IX I = max Ix ~] ~< q, x = (xZ, . . . ,  xa)} (2.5) 
l~<i~<d 

and we only consider q >/Po, where P0 is a fixed integer satisfying require- 
ments to be given below. We then introduce a partition of N A. To simplify 
the notation, we sometimes consider R A as the set of  S e E Z~, S = (Sx, 
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x e Za), such that S~ = 0 if y ~ A. The partition we consider is made up by 
the following disjoint atoms: 

Xo = {SAIE(Saq) < qalogq,  Vq /> Po} (2.6) 

xq = {SAIE(SAq_I) >>- (q - 1) a log(q - 1), 

E(SAq,) < q,a logq' ,  Vq' /> q}, q >/Po + 1 (2.7) 

In evaluating pA(SA), we will decompose the integral into a sum of 
integrals extended to the atoms of the above partition. We first consider 

pA~ -- (1/ZA) r dSA\~ e x p [ -  V(SA)] (2.8) 
~ x  

0 

We then write 

V(SA) = V(SA\{0})+ V(S(o~) + W(S(o~]S~,) + W(S~o~ISA\A) (2.9) 

where, if F c~ F' = Z,  

W(SrISr,)  = ~ '  r - Syl) (2.10) 
XGP 

y G I  ~, 

We note that, since SA is in Xo, there exist two positive constants D1 and D2, 
depending only on Po, such that 

[W(S~o)[SA\A)t <<. 01 

Is~l < D~, Ixl = 1 

We can now reconstruct the missing integration over dSo in Eq. (2.8) in 
order to obtain pA(Sz~,). To do this we use the above estimate and Eqs. (2.1) 
and (2.2): 

pA~ <~ exp[-- V(S~o~) - W(S~o,[SA.) + D~] x 1=_ ( dSA\~ ( dSo 

exp{-V(SA) + 2A + 2d[(D2 + 1) z + 1]B} (2.11) 

~< exp[-W(S(o~[SA,) - V(S(o~) + D3]pA(Sa,) 

where D3 is a suitable large constant. 
We now introduce the convention that r = 0 if x r A, r S~ - Syl) = 

0 if either x or y g~ A (remember also that S~ = 0 if x r A), and dSr = 
l~i~r~AdS~. Then we consider (P~ is the complement of F) 

pA~(S~) = Z-~--~Afx dSA\A e x p [ -  V(SA)] 
q 

= ~ dS(xq~A)~ dSx~\~ 
q 

x exp[-V(SXg) - V(Sx~) - W(Sx~ISxg)] (2.12) 

where Aq --- Aq ~ ~Aq, Aq = Aq_ 1. 
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Now we split the interaction energy as before: 

(2.13) 

Then, ifpo is large enough (q > Po), 

paq(S~) ~< exp[-�89 - W(Sa~a~[S~x{)] 

if x ~ dS(x~A)~ exp[ -  V(Sx~)] x({E(Soaq) ~< 4dq a-z logq}) 

x dSs - ~  ~ (YS~"-A- ' )  + ~ B' 
x~.q\A x,yaAq\~ 

• exp[ -a (q  - 1) a log(q - 1) § A'IAq] + 2dN'IA~I] 

a = minr189 

(2.14) 

where we have used repeatedly Eqs. (2.1) and (2.2); Eq. (2.7) has also been 
used and the memory of the region of integration is left in Eq. (2.14) only in 
the characteristic function X appearing in the integral on the variables 
S,~(Xq~). Of course the choice of splitting the energy into thirds in Eq. (2.14) 
is arbitrary. 

We now perform the integral over the variables S&\~ and we obtain, for a 
suitable constant D4, 

log q + D41a ll(1/z.) f dS(xq a,o X exp[-�89 a 

x exp[-  V(S(xq)c)] x({E(&,, 4 4dq a-z logq}) (2.15) 

To get the analog of Eq. (2.11) we have to insert new integration variables 
SX~nA inEq. (2.15) in order to reconstruct pa(S~n~g). I f a  t> /3 this is quite 
easy and one can proceed as in Ruelle's papers by considering each Sx, 

o 
x a Aq ~ A, in the interval ( -  1, + 1), for example. The interaction energy with 
the outside spins Soaq is controlled by the energy E(S~&) in Eq. (2.15) and so 
we only lose a term of the form exp[clA~]], which will be controlled by the 
convergence factor exp[-�89 log q]. When a < /3 the situation is more 
complicated (for certain values of d,/3, ~) because one should let the inside 
spins vary slowly to control the interaction energy (]Sx - Sy[e). On the other 
hand, the energy factor ]Sx[ ~ is building up a large energy if the spins are n o t  
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made small. In the next section we prove that there is a configuration Za, such 
that: 

(i)  Z x  = Sx,  x e ahq. 
(ii) There is a constant b such that, if S2q satisfies 

I S ~ ' - Z , ~  I ~< 1, x s A q  

then 

E(S'~o) <.< bq ~ 

We then insert the new integral 

f dSI~A 
I S x -  Zxt ~ 1 

By (ii) we can also insert the energy factor e x p [ -  V(Sx~)] e x p [ -  W(Sx~ISxg)] 
with an exp[+clAql] error, so that finally we get from Eq. (2.15) 

pa q ~< e x p [ -  �89163 - W(SA~AqlS~s 
x exp[--�89 + DsIAql ] PA(SA~xg) (2.16) 

By use of Eqs. (2.1) and (2.2), from Eqs. (2.11) and (2.16) it is easy to find 
the conditions on ~, and 8 for which the induction hypothesis is fulfilled and 
then the thesis is proven as soon as conditions (i) and (ii) above are proven. 

From Theorem 2.1 one can use, as in Refs. 1 and 3, compactness argu- 
ments to prove the existence of DLR measures, thermodynamic limits for the 
Gibbs measures. The results of Refs. 1 and 3 directly follow, e.g., one can 
introduce regular DLR measures with support on 

{SIE(S ) = sup[E(SA~)/q a logq] < +oo} 
q ) l  

and then it can be shown that the regular DLR measures satisfy the super- 
stability estimates (2.4a), (2.4b). 

3. C O M P L E T I O N  OF T H E  P R O O F  

In this section we achieve the proof of Theorem 2.1 by proving the 
following proposition, which for the sake of simplicity will be given for d -- 3. 

Proposition 3.1. For all SoAq such that E(SoAq) < log q I~Aql, there 
exist a spin configuration ZAq = {Zx}~aq with the following properties: 

(1) Z~q = S ~ .  
(2) E(ZA~) <_ klIAql for some constant kl > 0. 

Proof. The idea of the proof is the following. We construct the configura- 
tion ZA in such a way that Zeal, r < q, is obtained from ZoA,+~ by letting 
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m I _ _  2. 

1 

Fig. 1 

down the spins ofZoA~ +1 so that the differences IS, - S~I, Sx, S~ e ZaAT, X, y 
n.n., are about the same as before. This roughly implies that E(S~aT) 
E(S~A,+I). Moreover, the differences between n.n. spins of aAr+l and aAr 
have to be small in order that the global interaction energy between two sur- 
faces not be made too large; but at the same time they need to be large 
enough to allow the spins to be small after a number of steps of the order of 
qO, 8 < 1, in order to satisfy the inequality in part 2. 

A counterexample, showing that condition 2 fails if all the spins inside 
Aq are put equal to zero, will be given at the end of this section. 

To make rigorous the above idea, we mimic the configuration S~A~ on 
the boundaries, aAr, r < q, by eliminating suitable sites. Now, ZoAq_~ may 
be built starting from SoAq by eliminating three pairs of internal connected 
lines of spins on the surface 0Aq as in Fig. 1. Such lines, denoted by lq, are 
chosen in such a way that their global energy 

& = lax? + l a x -  (3.1) 
XEIq )C~lq 

y~Aq 

satisfies 

Jff, <~ (k,/q)E(Saa,) (3.2) 



356 G. Benfatto, C. IVlarchioro, E. Presutti, and M. Pulvirenti 

face of ~lko 

' t / /  

// 

Fig. 2 

Since [aAqllql = laAq_ll, we define the one-to-one map r aAo\lq-+ 
~Aq_ 1 that associates the boundary of any face of 6~Aq to the boundary of the 
corresponding face of 0-/kq_ 1, the corners to the corresponding corners, and 
such that Cq(x), r are n.n. if x, y are n.n. (See Fig. 2.) 

Furthermore, we put 

Z~ = S,;I(~)(1 - 1/q ~) (3.3) 

where 8 < 1 and will be determined later. 
All the above procedure may be iterated [q6] times (here [k] denotes the 

integer part  of  k) by putting 

Z~ = S~[1 - (q  - r ) / q q  (3.4) 

and y = r z[r �9 - �9 r  ~(x)] with an obvious meaning of the symbols. The 
configuration Za  is completed by putting Z~ = 0 for x e A~_ [&- ~. 

With the configuration ZA fixed, we now compute its energy: 
q q - 1  

E(Z,) = Z E, + Z W, (3.5) 
i = 0  i = O  

where 

We have 

xe~A~, x , y e a A  t 

w, = Z '  IZx - 
xeOAt 

YeOAl + 1 

lZ~ - Z~[ ~ 

(3.6) 

E~ ~< E~+~ + Z *  ] Z x - Z y l  ~ (3.7) 
x,YG~Ar 

where ~* means that we sum over all the n.n. x, y ~ ~Ar such that r 
and r are not n.n. in 8Ar+l. Furthermore, inequality (3.7) holds since 

IZ~ - Z;I ~< lZ~;+~l(x) - Ze;21(y)l, Vx, y ~ 8A, 



Superstability Estimates for Anharmonie Systems 357 

The :7* may easily be bounded. Denoting by u and v the spins on the 
lines 4+1 that are n.n. of er+~(X) and r we have 

<. ~AIzr - .18  + I .  - ~1~ + I,~ - z ~ . - + ~ , l  ~} 

where c a = max{l, 3B-1}. Then, performing ~*, we get 

Er --< Zr+i + caff, r+z <~ E,+~ 1 + 

for some constant k3 > 0 [see (3.2)]. Then 

k~ ~q-, E~ <<.E~ 2 1 + r---~T] <'k~q~176 
r = q - [q~] r = q - [qO] 

(3.8) 

(3.9) 

(3.10) 
for some constant k~ > 0. 

L e t q - [ q q  ~<r < q .  Then 

w , :  ~'  iz~-z~l  ~ 
x e a A T  

YeOAr + 1 

<~ ka( Z I S~/q~ + E,+l} (3.10 
kY~aAq 

for some constant ka > 0. Hence 

q-i q 
w, <, k5 ~ E, + (1 + ksq9 ~ Is ~ (3.12) 

r = 0 r = 0 yec~Aq 

because of the following inequality: 

1 --  " - ~  Sy < (3 .13 )  
y 6 ~ A q  

Combining the estimates (3.12) and (3.10) with the following lemma, we 
obtain tlae thesis: 

L e m m a  3.2. In the hypotheses of Proposition 3.1, the following estimate 
holds: 

q~ ~ [&/qOl ~ <<. k61Aql (3.14) 
y e ~ A q  

for some constant k~ > 0 and 0 ~< 3 < 1. 
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ProoL Let P be a face of ~3Aq and g c p be a family of parallel lines 
{P~}p=~ with constant distance [qg'], 0 ~< g < 1; moreover, P~ and P~ have a 
distance from the two parallel corner edges of less than [qa] (see Fig. 3). Since 
we have [qa] ways of choosing such a g, we can find it so that 

E(g)  <~ 4E(r)/q a (3.15) 

Here E(g)  and E(P) denote, respectively, the energy of SaA[g and SaAIv. Let 
us denote by Q~, i = 1 . . . .  , n - 1, the subset of P between F~ and F~+~, 
including P~, and by Qo and Q~, respectively, the sets between the boundary 
part parallel to the F~ and Fz and F,, including P, and F,. Then we have for 
a l l x e Q ~ , i =  1 . . . .  , n -  1, 

ISxl -< I&~l + ~ '  I & -  S~l (3.16) 
Z,yG}'(X) 

and hence 

Is~l ~ -< c~[IS~,t ~ + lr(x)l ~<~>-1 ~' IS~- S~l e] (3.17) 
z , y ~ y ( x )  

where p(fi) = max{l, fi}. Here x~ denotes the projection of x ~ Q~ on F~, and 
y(x) and [y(x)] denote, respecti.vely, the straight path from x to x~ and its 
length (if x = xi, ]r(x)t = 0). Then 

isxl..< ee ~ y* {l&i ~ + Ir(x)l~,~>-i ~' 
xEQr xt~P~, x z,y6~,(x) 

I& - S~] B} 
(3.18) 

Here ;;* denotes the sum over all x ~ Q~ with the same projection x~. Finally, 

ISx[e ~< ce(q a ~ [Sx~l B + qgP<Z)E(Qi)t (3.19) 

X,;. �9 

Q~ x �9 F 

~ t,'J 

Fig. 3 
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Analogous estimates may be done for Q0 and Q~ in term of all x~ e lPl, P~: 

iSx[e <~ kv{qaO(e,E(p) + qa ~ [S~[a} (3.20) 
X e P  X~g 

with k7 a positive constant. 
The same argument as before may be used to estimate ~ g l S ~ l  a. In fact 

p in any s we choose a family of points denoted g~ ~ { ~y}j=z and such that 
E(g,) <~ 4E(P~)/q a. Then, following the above argument step by step, we get 

[Sx[e<<. kv{qa~ + q*~ IS~I e} (3.21) 
XePi xEgi  

and so 

~ IS.[e <~ kv{q?'P(e)E(g) + q-~ ~ ~ lSx! a} 

Let g = w~g~; we have in virtue of (3.15) 

E(r3 E(P)= 
E(g)  ~< 4 . qa ~< 16 q~O 

Then, if x e g, 

(3.22) 

(3.23) 

[Sxl <~ [16/q2ap/"E(F) 1/'~ 
and since they are in number not exceeding 4q m-g), we finally get, for some 
k s > 0 ,  

[Sxl B <~ 4qm-a)(16)B/~E(F)~/~q- 2-~(e/") 
x ~  

<~ kaq2(e/~)(1 - g) + 2(1 - ~3(log q)e/~ (3.24) 

Then we can fix g < 1 such that 

I&l ~ ~ k8q .+2<~-~' (3.25) 
x~6 

withO < ~ < 1. 
In virtue of the estimates (3.20), (3.22), (3.15), (3.24), and (3.25), we get 

[S.l~ .< kg{q-~OCB,E(s + q2+,} 
Xe]U 

and summing over all the faces, we obtain 

q~<*-~) ~ I&l B .< a:10{q '(l-~)+ao(~+=logv + q=+,+~(l-,~} 
xe~a v 

<~ knq a 
for a suitable choice of 3 < 1, so that the lemma is proven. 
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Remark 1. I f /3  ~< 1, we can choose 3 = 0, that  is, it is possible to 
obta in  a " g o o d "  configurat ion Za~ such that  Zx = 0 if x ~ c~iq. 

Remark  2. I f  d # 3 the above a rgument  should be repeated d - 1 
t imes instead of twice. The p roo f  is then completely analogous.  

Minor  modificat ions allow us to prove s tatements  (i) and (ii) of  Section 2 
f rom Propos i t ion  3.1. By changing constants  we can write q a, q a-1 instead of  
iAq], ]OAqI. Fur thermore ,  if we consider a configurat ion SA~ which differs as 
in (ii) f rom ZA~, i.e., 

I S x ' - Z x l  ~< I, x ~ A ~  
then, by the inequality 

E(S'A~) ~ c,E(ZA.) + klzq a 

valid for  suitably large kz2, we obtain the result. 
W e  complete  this section by giving an example of  a configurat ion S~Aq 

with E(SoA~)<~ q a - l l o g q  such that  the configurat ion SAq obtained by 
o 

put t ing S~ = 0 for  x ~ Aq has energy E(Sa~) > cq a+~ for  e sufficiently small 
and c > 0. 

Let F = {x ~ Aqlx  ~ = q} be a face of  Aq and x0 = (q, 0 , . . . ,  0) its center. 
We consider a configurat ion Sa,  such that  

(1) Sx = S(1 - k /R)  i f x ~ F a n d l x -  x0[ = k ~< R ~<q. 

(2) S~ = 0 otherwise. 

Here  S and R, R integer, are positive constants  to be fixed later. Observe now 
that  there exist cz, c2, ca, c4 so that  

E(S~A~) <~ cl ~ k d- 2 S~ 1 - + 
0 

<~ ca(R~- lS  ~ + R ~ - ~ - ~  ~) 

E(S o) >1 1 - 

0 

For  the example  in which we are interested, it is sufficient to be able to choose 
and  R so tha t  

R a - l ~ "  + Ra- I -B~B <~ csq a-1 

R a - I S  ~ >~ csq a+n (3.26) 

for  suitable c5, c6, and ~ > 0. I f  we put  

R = q~, 0 ~< e ~< 1 (3.27) 

it is easy to see that  (3.26) can be satisfied if 

1 + ~ ~< �9 ~< 1 - [(d + ~ ) / ( d -  1)]~//3 (3.28) 
fi 1 - c~//3 
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I t  is now clear that  condit ions (3.27) and (3.28) can bo th  be satisfied for  a 
suitable ~7 > 0 only if/3 > 1 (in agreement  with r emark  1) and d is large 
enough. 

4. C O N C L U D I N G  R E M A R K S  

In proving Proposi t ion 3.1 a central role is played by L e m m a  3.2, which 
gives a way of bounding ~ Sx B in terms of  ~ ' ISx  - Syl B. This recalls the 
classical Sobolev inequalities, which in our context  read: let {SxlxeT/~,  
S~ = 0 for  x e pc, I '  bounded  set} be a spin configuration.  Then 

where 1/~, = 1//~ + 1/u. 
Unfor tunate ly ,  inequalities such as the above do not  seem to work  

directly in our case because we need to bound  the l B norm of S in terms of  the 
same l B no rm of the gradient,  and to get such bound  the convexity inequality 
gives bad  estimates for  our  purposes.  The idea of  L e m m a  3.2 is to use the 
convexity inequality as little as possible and along suitable low-energy paths.  

Theorem 2.1 has been proven under  the assumpt ion  that  c~ > 0. This 
plays an essential role in our  method  (see Section 3). I f  one assumes c~ = 0, 
/3 = 2, then it is well known (4~ that  for  d = 1, 2 no limiting state exists, while 
for d = 3 one does. In  the case c~ = 0 one could look only at the r a n d o m  
variables which are the differences between n.n. spins. This leads to a new 
infinite-spin system, where now c~ r 0 but  in each plaquette  the sum of  the 
new spins should be zero. This also cannot  be treated s t ra ightforwardly with 
our  method,  because it corresponds somehow to/3 = oo. 

The extension of  our  results to infinite range would also be of  interest 
and does not  follow straightforwardly f rom our considerations.  

Another  interesting extension is connected with the lattice spacing going 
to zero. One should get limiting states with suppor t  on trajectories, whose 
continuity propert ies  depend on the way we choose the interaction dependence 
on the lattice spacing. 

We finally ment ion  that  Theo rem 2.1 allows us to extend the p r o o f  in 
Ref. 5 of  the existence of  the dynamics for  anharmonic  crystals. Namely ,  in 
that  paper  it was assumed that  ~ i> fi (in our  notat ion) only to ensure that  the 
equil ibrium state exists and satisfies the superstabili ty estimates. 
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